Notation

INT, ). CONTROL, 1989 wol, 49 wo, 3, 745 760

Compliant motion control for robot manipulators

H. KAZEROONIT

A practical, non-lincar controller design methodalogy 15 presented for robot
manipulators puaranlesing that the robol end-point follows an input command
vector ‘closely” when the robot 15 nol constramed by the environment, and that
the contact force 15 a function of the same mpul command veclor {used in the
unconstrained enviconment) when the robot s constrained by the environment.
The controller is capable of "handling” bath types of constrained and unconstrained
manoguvres, and is robust 1o bounded uncertainties in the robot dynamics. The
controller does not need any hardware or software switch for the transition between
unconstrained and constrained manocuvring. Stability of the environment and the
manipulator taken as a whole has been nvestigated, and a bound for stable
manipulation bas been derived. For stability, there must be some initial compliancy
etther in the robot or i the environment. A unified approach 1o moegelling robot
dynamics is expressed in terms of sensttivity functions, as opposed 1o the lagrangian
approach, allowing the mcorporation of the dyvonamic behaviour of all the robot
manipulator elements.

A ¢losed-loop mapping from rto O in Figo 3
d wvegtor of the external force on the robot end-point (all vectors are nox 1)
¢ Inpul trajectory vector
£ environment dynamics
f wvector af the contact force [ f, ... f.]
[ limiting value of the contact force for infinitely rfgid environment
¢ robot dynamics with positioning controller
H  compensator transfer funclion matrix (operating on the contact force, )
[, dentity matrix
¢ input-command vector
# degrees of the [reedom of the robot 1< 6
5 robot manipulator sensibivity | 1/stiffness)
T positive scalar
I forward loop mapping from e to [ in Fig 5
& vector of the environment deflection
v vector of the robot end-point position
v, limiting value of the robot position for rigid environment
v, veclor of the environment position before contact
# wector al the joint angles of the robot

&, B4, iy positive scalars

wy,  [requency range of operation {bandwidth)

i, 1, v positive scalars

Received 4 January 19EE
$ 111 Church St, SE, Mechanical Engincenng Department, University of Minnesota,
Minneapolis, MN 53435, LLSA.

CO20-TL 79/ S0 00 1989 Taxlor & Franos L,




Tdé H. Kazeranni

. Introduction

Most assembly operations and manuflacturing tasks require mechanical inter-
actions wath the environment or with the object being manipulated, along with ‘fast’
maotion m free and onconstruined space (Mason 1981, Paul and Shimano 1976,
Salisbury 19801, We plan to develop a control system such that the robot will be
capable of manocuvring i both constrained and unconstrained environments
without any hardware and software switches in the transition peried. In meeting the
above goal, the ohjeclive 15 to provide a stabilizing dynamic compensator for the
robot manipulator such that the following design specifications are satisfied:

1) The robot end-point follows an input-command veclor, v, when the robot
manipulator is free to maove,

(11} The contact loree, [ a [unction of the input command vector, r, when the robot
15 in contact with the environment. { In this paper, ‘loree” implies both [oree and
torque and ‘position’ implies both position and onentation.)

The first design specification allows for free manipulation when the robot is not
constramed. If the roboi encounters the environmeni, then according to the second
design specification, the contact force will be a function of the input command
vector, r, Consequently, the system will have bounded and controllable contact foree.
Wote that ro1% an input command vector that is used for both unconstrained and
constrained manoeuvres, The end-point of the robot will follow r when the robot is
unconstrained, while the contact force, f, will be a [unction of r (preferably a linear
function for some bounded frequency range of r) when Lhe robot is constrained.

2. Dynamic model of the robot with positioning controllers

In this scction, a general approach will be developed (o describe the dynamic
behiaviour of a farge class of industrial and research robet manipulators having
positioning controllers. The fact that most industrial mampulators already have some
kind of pasitioning controller is the motivation behind our approach. Also, a number
ol methodologies exist for the development of robust positioning centrollers for direct
and non-direct robot manipulators (Slotine 1983, Vidyasugar and Spong 1985). The
unified approach for modelling robot dynamics discussed here 15 expressed in terms of
sensitivity functions, It allows us to incorporate the dynamic behaviour of all the
elements of 2 robot manipulater in addition to the rigid body dyvnamics.

The end-pomnt position of a robot mamipulater that has a positioning controller is
a dynamic function of 1ts input trajectory vector, e, and the external force, d. Let G and
5 be two functions that show the robot end-point pesition s o function of the mput
trajectory, ¢ and the external force. d. | The assumption that linear superposition in (1)
holds for the effects of & and ¢ is useful in understanding the nature of the interaction
hetween Lhe robat and the environment. This interaction 15 in a feedback form and will
he clarified with the help of Fig 3 We will note in § 4 that the results of the non-lincar
analysis do not depend on this assumption, and one can extend the obtained results to
cover the case when Gle] and S[d ] do not supenmpose. )

y=10[e] + S[d] i1
Robot manipulators with tracking controllers are not infinitely stiff in response to

external forees (also called disturbandes), Even though the positioning controtlers of
robots are usually designed to follow the trajectory commands and reject dis-

-
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turbances, the robot end-point will move somewhat in response to mmposed forces on
it The motion of the robot end-point in response to imposed forces is caused by either
structural complianee in the robol or by the compliance of the positioning controller.
[In a simple example, if a Remote Centre Comphance |RCC) with a linear dynamic
behaviour is installed at the end-point al the robot, then 515 equal to the reciprocal of
stiffness (impedance in the dynamic sense) of the RCC.) § is called the sensitivity
function and 1t maps ke external forees o the robol position. For a robot with a
‘pood” positioning controller, S isa mapping with small gain. { The gain of an operator
is defined in Appendix A) No assumption on the internal structures of Ge] and S[d]
are made. Figure 1 shows the nature of the mapping in (1)

We assume that Ge] and S[4] are stable, non-linear operators in the L -space; in
ather words Gie] and S[d ] are such that G Li—+ L5, 81 LE— L7 and also there exist
constants a;, f#;, 2z, and §; such that |G[e]l|, < |le|,+ A, and |S[d]/, <2 |d],
+ {1, (The definition of stability in L -sense is given in Appendix Al

MNote that we maodelled the dynamic behaviour of the robol based on an
mnpul—output functicnal relationship. This unified approach to modeliing allows us to
meorporate the dynamic behaviour of all the elements of the robot, Considering the
robot as a rigid body, the dynamic behaviour of an open-loop robot can be derived by
4 set of non-hnear differential equations via the lagrangian or eulerian approach.
However, there may be enough components in the robot itself that rigid body
dvnamics is not sufficient for modelling. In fact, in many industrial hydraulic robaots,
the actuators and the servovalves dynamics dominate the total dynamic behaviour of
the rabots. We try toavowd using structured dynamic models such as first- or second-
order transfer functions as general representations ol the dynamic behaviour of the
compaonents of the robot (e.g. servovalves in the hydraulic robots and the gear stiffness
in the non-direct drive systems). We are proposing a dynamic model that can
represent the complete dynamic behaviour of the robat in a very general form.

A similar modelling method can be given for analysis of the linearly treated robots.
The transfer function matrices G and § in (2) are defined to describe the dynamic
behaviour of a linearly treated robot manipulator with positioning controller:

¥ jeo] = G jwTel jeu] + S jeo] d[ juo] {2}

i Throughout this puper, for the benelit of clanity, we develop the frequency domain
theory for linearly treated robots in paralicl wilh the non-lincar analysis. The lingar
analysis 15 useful not only for analysis af robots with inherently linear dynamics, but
also for robots with locally hnearized dynamic behaviour. In the latter case, the
analysis 15 correct only in the neighbourhood of the operating point.)

In {2}, 5 15 called the sensitivity transfer function matrix and it maps the external
lorces to the end-point position, G jee] 18 the closed-loop transler lunction matrix that

- . u
- G

Figure 1. Dynamics of the manipulator with the positiomng controfler (alf the eperators of
the block disgrams of this paper are unspecified and may be frequency domain
mappings ar time domaio input - output refationships)
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maps the input trajectory vector, e, to the robot position, y. For a robot with a *good’
positioming controller, within the closed loop bandwidth S[ jew] is 'small® in the
singular-value sense, while G[ jw] is approximately a unity matrix. ( The maximum
singular value of a matnx M, 7., [M] is defined as:

| M

where z 15 a non-zero vector and | - | denotes the euchidean norm.)

3. Dwvnamic behaviour of the environment

The environment can be very soft’ or very ‘hard’. We do not restrain ourselves 1o
any geometry or to any structure. Il one point on the environment is disp]ﬂuud as
the vector x. then the reguired lorce to do such a task 15 /. Mapping £ in(3) represents
the environment dynamics:

f=Elx] (3

%, in Fig, 215 the initial location of the point of contact before deformation occurs
and v is the robot end-point position [x = y — x]. £ is assumed Lo be stable in L
sense;, ExL—ELLY and || E{x) =y flxl|,+ fy. Confiming (3) to cover the linearly
treated environment, (4} represents the dynamic behaviour of the éenvironment with
lincar differential equations.

{[ jio] = E[ jew)x] jo] ()

E[ jes] s a transfer function matrix that maps the amphtude of the displacement
vector, x, to the amplitude of the contact force, . The matrix E is an n = r transfer
function matrix. £ s a singular matrix when the robot interacts with the environment
in only some directions. For example, in grinding a surface, the robot is constrained by
the environment in the direction normal to the surface only. Readers can be convinced
of the truth of (4] by analysing the relationship of the foree and displacement of a

Figure 2. Environment and its dynamics




Compliant mation control 741

spring as a simple model of the environment. £ resembles the stifiness of a spring,
Razerooni (1986 a, b represent [Ms® + Cs+ K] for E where M. € and K are
symmetric square matnces and s = joo [ Lancaster er al. 1966). M 15 the positive definite
inertia matrix while C and K are the positive semi-definile damping and the stiffness
matrices, respectively.

4. Mon-linear dynamic behaviour of the robot manipulator and environment

Suppose a manipulator with dynamic equation (1) 15 in contact with an
environment given by (3); then f = —d Figure 3 shows the dynamics of the robot
manipulator and the environment when they are in contact with each other: Note that
in some applications, the robot will have only uni-directional force on the environ-
ment. For example, in the grinding of a surface by a robot, the robot can only push the
surface. If one considers positive f, for "pushing” and negative f; for “pulling’, then in this
class of manipulation, the tobot manipulator and the environment are in contact with
cach other only along those directions where [ =0 for i=1, ... n In some appl-
cations such as screwing a boll, the interaction force can be positive and negative,
This means the robot can have clockwise and counter-clockwise interaction torgue.
The non-hinear discriminator block-diagram in Fig, 315 drawn with a dashed line to
illustrate the above concepl.

Llsing { 1-{3), (3) and (&) represent the entire dvnamic behaviour of the robot and
environment as a whole:

y=Gle] + ST~ (9
f=E[x] where x=y— x4 [6)
[f all the operators in Fig. 3 are considered linear transfer function matrices, (7)

and (8) can be obtained to represent the end-point position and the contact {orce
when x, =M

y=[I,+SE] ‘Ge (N
f=E[l,+SE] "Ge (8)

To simplify the block diagram of Fig. 3. we introduce a mapping [rom e to
F=V[e] (%

V' is assumed to be a stable operator m the L -sense; therefore: V:I.’;'-—-I.’r‘. and also

Flelll, =msllel,+ ffla. Mote that one can still define V' without assuming the
superposition of effects of e and d m (5) (or (1)). If all the operators in Fig. 3 are
transfer lunction matrces, then V= E[I, + SE] G

ar N

il

d — h—
. 1

o

Figure 3, Interactiton of the robol manipulator with the environment
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5. Architecture of the closed-loop system

We propose the architecture of Fig, 4 to develop compliancy for the rabol. The
compensator, H, 1s considered to operale on the contact foree, £ The compensator
output signal 1s being subtracted from the input command vector, r, resulting in the
input trajectary vectar, ¢, for the robol mampulator.

There are two feedback loops in the system; the inner loop (which 15 the natural
feedback loop), is the same as the one shown in Fig. 3. This loop shows how the
contact force affects the robot in a natural way when the robot 15 in contact with the
environment. The outer feedback loop is the controlled feedback loop. If the robot
and the environment are noet in contact, then the dynamic behaviour of the system
reduces to the one represented by (1), which is-a plamn posttioning systern. When the
robot and the environment are in contact, then the value of the contact lorce and the
end-point position of robot are given by [ and  where the following equations are
Lrue

v=Gle] +5[—=f] (10}
f=E[x] where x=y—x, {(11)
e=r—H[{] (12)

[f the operators in (10}, (11), and {12} are considered transfer function matrices,
(131 and (14) can be obtained to represent the interaction force and the robot end-
point trajectory for linearly treated systems when x, = O

F=E[l,+SE+GHE] 'Gr (13
v=[1,+8E+GHE] " Gr i(14)

The vbjective is ta cheose a class of compensators, H, to conlrol the contact foree with
the input command r. By knowing §, &, £_and choesing H, one can shape the contact
force. The value of H is the choice of the designer and, depending on the task, it can
have various values in different directions, A large valuc for H develops a compliant
robot while o small H generates a sufl robot. Note that § and GH add in (14) 1o
develop the total compliancy in the system. GH represents the electronic compliancy
mm the robot while § models the natural hardware compliancy (such as RCC or the
robot structural complianey) in the system. Equation (14} can be rewritlen as y=
ETTE- ¢ 5+ GH] ' Gr, Note that the environment admittance (1/impedance in
the linear demainl, £ 7, the robot sensitivity | E/stiffness o the linear domain), 5, and

L

I H f—~

compensalor

Figure 4. Closed-loop systen.
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the electronic compliancy, GH add together to form the total sensitivity of the system.
Il H =0, then only the admittance of the environment and the robot add together to
form the compliancy lor the system, By closing the loop via H, one can not only add to
the total sensitivity but also shape the sensitivity of the svstem. One cannot choose
arbitrarily large values for H; the stability of the closed-loop system of Fig. 4 must be
guaranieed. The trade-off bhetween the closed-loop stahility and the size of H is
investigated m § 6.

When the robot is not in contact with the environment (ie, the outer feedback
l2opin Fig. 4 does not exist), the actoual position of the robot end-point is poverned by
i 1} When the robot is in contact with the environment, then the contact force follows r
according to (10), (11} and (12). The inpul command vectof, r. is used differently for
the two categories of manoeuvrings: as an input trajectory command in unconstrained
space (see (1)) and as a command to contrel force m constramed space; We do not
commanid any set-point for force as we do in admitlance control { Raibert and Craig
1981, Whitney 1977). This method is called impedance control (Hogan 1985,
Kazerooni 1986 a, b) because it accepts a position vector as input and reflects a force
vector as oulput. There is no hardware or software switch in the control system when
the robot travels between unconstraimed space and constrained space. The leedback
leop on the contact force closes naturally when the robot encounters the environment,

6. Stability analysis

The objective of this section s Lo arrive al 4 sufficient condition for stability of the
system shown in Fig. 4. This sulficient condition leads to the introduction of a class of
compensators, . that can be used to develop compliancy for the family of robot
manipulators with dynamic behaviour represented by (1), Using operator V' defined
by (9), the block diagram of Fig. 5is constructed a5 @ simplified version of the hlock
diagram of Fig. 4. First we use the Small Gain Theerem to denve the general stability
condition. Then, with the help of a corollary, we show the stability condition when H
s chosen as a linear operator (transfer lunction matrix). Inequality (24) shows the
hound on the size of H in the singular-value sense when H s a transfer function matrix
while 1 is still & non-linear operator. Finally, if all the operators in Fig. 4 are transfer
function matrices, then the stability bound is shown by (23}, Scetion 7 15 devoted to
siabilily analyvsis of the linearly treated systems, when the environment is infinitely
rigid in comparison with the robot stiffness. The stability analysis and the role of
robot sensitivity and environment dynamies on size B are best shown by linear theory
in (27)— 31}, 1nn particular, we confine our analysis to linear one-degree-of-freedom
rabat in (32) and (330 for better undarstanding the nature of the stability analysis,

The following propositon (using the Small Gain Theorem) states the stahility
condition of the closed-loap svstem shown in Fig. 5.

Fipure 5. Manipulator and the envirenment with foree feedback compensator (simplified
version of Figure 4}
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[ conditions (1), (n) and (i) hold:

(i1 ¥ is an Lg-stable operator, that is
(@) Vl]el:Lo—L? (15)
by IFLellp=aglel .+, (16

{u) H 1s chosen such that mapping H[ /] 15 L -stable, that is

() H[f]:Ly—L; (17
() | HL M p=<asll £, + B {18)

and
R P (19

then the closed-loop system (Fig. 3) is L-stable. The prool is given in Appendix A.
Substituting for [ |, from (16) into (18] results in (20) (nete that = Fe])

[HFLe]ll,; = mams lledl, + o ffa + Fs (20)

gy i {20} represents the gamn of the loop mapping, HV[e]. The third stability
condition requires that H be chosen such that the lcop mapping, H¥[e], 1s linearly
bounded with less than a umity slope. The following corollary develops a stability
bound il H 15 selected as @ linear transfer function matrix,

Corollary

The key parameter in the proposition 15 the size of a,2.. According to the
propasition, Lo gudrantee the stability of the system, ff must be chosen such that norm
of HV[¢#] is linearly bounded with a slope that is smaller than unity, If H is chosen asa
linear operator (the impulse response) while all the other aperators are still non-
hinear, then

Hl'[_r]!_l,,e: v Vel . (21}
where

¥ = Oua LV (22

T indicates the maximum singular value, and N is 4 matrix whose {ith entry is

IH - In other words, each member of N 15 the L; norm of each corresponding
member of H. Considering (16). {21) can be rewritten as,

[HVTe]ll, <3| VIell, < v2allel, + 7ha (23)
Comparing (23} with (200, to guarantee the closed-loop stability, yax, must be smaller
than unity, or, equivilently:

Y [2d4)

To guaraniee the stability of the closed loop system, H must be chosen such that its
‘sige’ is smaller than the reciprocal of the “gain’ of the forvward loop mapping in Fig. 5.
Mote that v represents a ‘size” of H in the singular-value sense.
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When all the operators of Fig. 5 are linear transfer function matrices one can use
Multivariable Nygquist Criteria to arrive at the sufficient condition for stability of the
clased-loop svstem. This sutficient condition leads to the introduction of a class of
transfer function matrices, M, that stabbze the family of linearly treated robot
manipulators and environment using dynamic equations {2} and (4). The detailed
derivation for the stability condition 15 given in Appendix C. Appendix D shows that
the stability condition given by Nyquist Criteria 15 a subset of the condition given by
the Small Gain Theorem. According to the results of Appendix C. the suflicient
conditien for stabihty is given by (25).

T LOHE] o, [SE+1,] forall we [0, =] [25]

min
OT 4 more conservative condition,

| .
Ol ] < mﬂ'ﬂ_ Gl for all we [0, o] (26)
Similar to the non-linear case, H must be chosen such that its 'size’ is smaller than the
reciprocal of the ‘size’ of the forward loop mapping in Fig. 6 to guarantee the stability
of the closed-loop system. Mote that in (26) 7, represents a ‘size” of H in the singular-
value sense.

Inequality (26) reveals some facts about the size of H. The smaller the sensitivity of
the robot manipulator s, the smaller H must be chosen, Also from (26), the more rigid
the environment is, the smaller ff must be chosen. In the ‘ideal case’, no H can be
found to allow a perfect positioning system [ 5 = 0] to interact with an infinitely rigid
environment [ E = oo, In other words, for stability of the system shown in Fig. 4, there
must be some compliancy either in robot or in the environment. RCC, structural
dynamics and the tracking controller stiffness form the compliancy of the robot.
Section 7 gives more information about the effects of E on the stability region.

v

0
EISE«T1,) G

Figure fr. Simplified form of Fig. 5 when all the operators are linear transfer function matrices:
V=E{ <5E°'G

7. Stability for very rigid environment

In most manufacturing tasks, the end-point of the robot manipulator is in contact
with a very stiff environment, Robotic deburring and grinding are examples of
aractical tasks in which the robot 15 in contact with hard envirenment {Kazerooni
1986 c. 1986 a, 1988). According to the results in Appendix B, when the environment is
very stiff, (E 15 very ‘large’ in the singular-value sense), the limiting value for the
contact force and the end-point position are given by (27) and {28) respectively!

f. =[5+ GH] ‘Gr (27)
v =0 (2%)

Since (7 = I, for all e € [0, g ], (the end-point position is ‘approximately’ equal to the



134

H. Kazerooni

inpul trajectory vector, ), the value of the contact foree, f, within the bandwidth of the
system [0, ey ] can be approximated by (29):

Fo=[S5+H] 'r forall me[0 w,) (29

By knowing 5 and choosing . one can shape the contact force. The value af [5+ H]
within [0, ey ] s the designer’s choice und, depending on the task, it can have various
vilues in different directions (Kuzerooni 1986 a. 1986 b). A large value for [5+ H]
within [0, e, | develops a compliant system while a small [5 + H] generates a stiff
system. If K is chosen such that [5 + H] is large’ in the singular-value sense at high
frequencies, then the contact force in response to high-frequency components of r will
be small. If H is chosen to guarantee the compliance in the system according to (29),
then it must also satisfy the stability condition. It can be shown that the stability
criteria for mteraction with a very rigid environment s given by (30):

. 1
T innan r}j] %= T_IG]

[ETEES

lor all we [0, o] [ 309

It is clear that if the environment 15 very rigid, then one must choose a very small H to
satisly the stability of the system when § is small’. (A good positioning system has
small’ &) Sinee G= 1, for all e = [0, ey ], the bound for #f, for a rigid environment
and a ‘small’ stiffness, 15 given by (313

Fama L] = 0 [5] forall are [0, wy] (31

IT 5 is zero, then no H can be obtained to stabilize the system. To stabilize the system
ol the very rigid environment and the robot, there must be a minimum compliancy in
the robot. Direct drive manipulators, because of the elimination of the transmission
systems, often have large 5. This allows for a wider stability range in constrained
manmipulation. In the case of the one-degree-of-frecdom system the condition for
stahility is given by (32

__ |
| A = |['>_ + P far all = [0, | (32}
where | + | denotes the magnitude of a transter [unction. Since in many cases G = | for
all 0= cr =y, then § must be chosen such that:

I
|H| < ”E. + F_—H for all e [, w, | (33)

Inequality (33) clearly shows that the more rigid the environment is, the smaller H
must be chosen to guarantee the stability of the closed-loop system. In the case of a
rigid environment | large’ £} and a 'good’ positioning system, A must be chosen as a
very small gain,

We conclude that for stahility of the environment and the robot taken as a whole,
there must be some initial compliancy either tn the robol or in the environment. The
inital compliancy in the rebot can be obtained by a non-zero sensitivity function or a
passive compliant element such as an RCC. Practutioners always observed that the
system of a robol and a stll environment can always be stabilized when a compliant
element (e.g. piece of rubber or RCC) is installed between the robol and environment,
Omne can also stabilize the system of robot and environment by increasing the robot
sensitivity function. In many commercial manipulators the sensitivity of the robot
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where w15 the weighting lactor. w, is partcularly uselul for scaling forces and Lorgues
of different units,

Definition 5
Let of - ]: L} — L}, We say that the operator V[ - ] is L,-stable, if:
fa) of - 345 rL;_'I

(b} there exist fimite real constants «, and f§, such that

Viell, < ayllel,+ B, Veel]

According to this defimtion we first assume that the operator maps L7, to L7, It is
clear that if one does not show that of - ] L — L the satisfaction of condition (a) is
impossible since L7, contains LY. Once mapping, of « 1. from L}, to Ly 15 established,
then we say that the operator ¢ - ]is L _-stable if, whenever the input belongs to L
the resulting output befongs to L], Moreover, the norm of the output is no larger than
¥, times the norm of the input plus the offsel-constant i,

Drefinition &

Ihe smallest =, such that there exist a ff, so thal ineguality b of Definition 5 is
satished is called the gain of the operator of - |,

Definition 7
Let V[ + ] Lo Ln

e

The operator F[ -] 15 sad to he causal if

Vielh=Vlesl ¥T=w and Veell,

Proaf af the non-linear stability propesition
Define the closed-loop mapping A:r—e (Fig. 51
e=r— HVe] A1)
For each finite T, (A 2) 15 true.
ler e = lrsllo+ 1HVLEl I, foralltelD T] (A2}
Since HV[e] 18 L -stable. Therefore, (A 3) i truc,

i r

< lrpllp+ xsiallerll, +2sffa + s forall e [0, T] (A 3)

Since 2, x, is less than unity:

[ 1 o fl, 4+ [ i i
eplly < AL B a2 L B8 faralbia [0.T] (A 4}
| —ugm, | — ey
Inequality (A 4) shows that e[ - ] is hounded over [0, T] Because this reasoning is
valid for every fimite T, it follows that ef + ] & L7, e that A L] — L7, . Next we show
that the mapping A4 is L,-stable in the sense of Defimition § Since r e L], therefore

Fllp = oo forall te [, oo ], therefore (A 5) 15 true:
= s forall te[0, =] (A 5)

Inequality | A 5) implies ¢ beiongs to [._-space whenever r belong to L -space. With the
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same reasoning from (A [1=(A 3), it can be shown that (A 6) s true

T s AP+ s = T

[lell, = +——= ferallee[0. T] [A &)
1 — ey | -

fnequality (A &) shows the linear boundedness of ¢ (Condition (#) of Definition §).

Ineguality (A 6} and (A 5) taken together, guarantee that the closed-loop mapping A

i5 L -stable 0

Appendix B

A very rigid environment generates a very large lorce for a small displacement. We
choose the minimum singular value of E to represent the size of £ The following
proposition states the limiting value of the force when the robot manipulator 15 1n
contact with a very rigid environment.

If o, ,[E1= Mg, where My is an arbitrarily large number, then the value of the
farce given by (21) will approach the expression given by (B 1)

fo=[5+GH] 'Gr (B 1)

Proal
We will prove that |, — f| approaches a small number as M, approaches a large

number:
,

£

[=[S+GH1 (I, S+ GHJE[I, + SE + GHE] " '1Gr (B2)
Factoring [1, + SE + GHE] ' to the right-hand side:
i _r'=|_5+l:'_r'f”"[|r" i ."”-T+E'F!'”'_']_:{rr (B3}

-}

lfe—f1 € 0ul S+ GH] ™' % 0 [Lu+ SE + GHE] ™! % 0,,,,[G]Ir]  (B4)

: Foes [ 1 ] .
e Sk (B 5)

" [S§+ GH] % [0, [SE + GHE] - 1]
DRI . .
b A T g[8+ GH] %[5+ GH] % 0,,[E]— 1]

':Tl'.||1!|

(B &)

g [G]and o, [S+ GH] are bounded values. If o, [E] = My, then it 15 clear that
the left-hand side of {B 6) can be an arbitrarily small number by choosing M, to be a
large number, {The prool for v, =0 is similar to the above)) [

Appendix C

The objective is to find a sufficient condition for stability of the closed-loop system
in Fig. 4 by Nyquist criteria. The block diagram in Fig. 4 can be reduced to the block
diagram in Fig. 7 when all the operators are lincar transfer function matrices and
v, =

There are two elements in the feedback loop: GHE and SE, SE shows the natural
force feedback while GHE represents the controlled force feedback in the system. If
H =), then the system in Fig. 7 reduces to the system in Fig. 3 (a stable positioning
robot manipulator which is in contact with the environment E). The objective is [o use
Nyquist criteria (Lehtomaki 1981, Kazerooni and Houpt 1986) to arrive al the
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Figure 7. Simplified block-diagram of the system in Fig 5.

sufficient condition for stability of the system when H = 0. The fallowing conditions
are regarded.

{1} The closed-loop system in Fig. 75 stable if 1{ = 0. This condition simply states
the stability of the robot manipulator and environment when they are in
contact, (Figure 3 shows this configuration.)

(i) H is chosen as a stable linear transfer function matrix. Therefore the
augmesnted loop trunsfer function [GHE + 5F] has the same number of
unstable poles that SE has. Note that in many cases SE is a stable system,

(11} Number of poles on jer axis for both loop SE and [GHE + SE) are equal.

Considering that the system in Fig. 7 s stable when H =10, we plan to find how
robust the system 15 when GHE is added to the feedback loop. If the loop transfer
function SE (without compensator, H) develops a stable closcd-loop systern, then we
are leoking for a condition on H such that the augmented loop transfer function
[GHE + 5E] puarantees the stability of the closed-loop system. According to the
Nyquist criteria, the system in Fig, 7 remains stable if the anticlockwise encirclement
of the det [SE + GHE + [, ] around the centre of the s-plane is equal to the number of
unstable poles of the loop transfer function [GHE + SE7. According Lo Conditions (1)
and {iii) the loop transfer functions SE and [GHE — §E] both have the same numhber
of unstable peles. The closed-loop system when H =0 is stable according to
Condition (i) the encirclements of det [SE + [,] is equal to unstable poles of SE.
When GHE is added (o the system, for stability of the closed-loop system, the number
of the encirclements of det [5E + GHE + 1] must be equal (o the number of unstable
poles of the [GHE + §ET, Since the number of unstable poles of [SE + GHE] and SE
are the same. therefore for stahility of the system det [SE + GHE + 1] must have the
same number of cncirclements that det [SE 4+ 1] has. A sufficient condition to
guarantes the equality of the number of encirclements of det [SE + GHE +1,] and
det [S§E +1,] 15 that the det [SE + GHE + 1.] does not pass through the origin of the
s-plane for all possible nen-zero but finite values of H. or

det [SE+GHE+ [ ]+ 0 forall el =] 1
IT{C 1} does not hold then there must be a non-zero vector 2 such that:
[SE+GHE+ I ]z=10 {(C2)
ar
GHEz: = —[S8E+ 1]z (C3)

A suflicient condition Lo guarantee that (C 3) will not occur 15 given by (C 4),

don [GHE] <0, [SE+1,] forall we0, =] (C4)
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o1 d more conservative condition:

1

Jmnx[f'{_—.]ﬁ:'; = T er g B g
g [E(SE+1,) 'G]

for all we [0, x] {C3)
Mote that E[SE+ 1] ' G is the transfer function matrix that maps ¢ 1o the contacl
lerce, £ Figure & shows the closed-loop system. According to the result of the
proposition, H must be chosen such that the size of H is smaller than the reciprocal of
the size of the forward loop transfer function, E[SE+ 1] 'G

Appendix D
The following inequalities are true when p=2 and H and V are linear operators:
[HLVEelll, <vIVLell, (D1
IVLelll, < ulell, D32
where

=0, [0], and @ is the matnx whose gik cntry s given by [Q];;=sup,, I[@],)]
v=0,,[R], and R is the matrix whose jfth entry is given by [R];; =sup, [[R]I

Substituting inequality (D2 2) in (D 1)

HVLE, < avllel, (D3
According to the stability condition, to guarantee the closed-loop stability gv = 1 or;
|
P (24
M
Mote that the Jollowing are true;
Tol ¥ =g forall we [0 «] (D3
d o [H]=v forall ee [ o] {006y

Substituting (D 5) and (D 6] into (D 4) which guarantees the stability of the system,
the following inequality is obtained,

L
Firan |—'”-| i

—  for all me [0, o] (D7)
[V]

I
Omas [ELIy +SE] 1G]

e =l for all we [0, o] {DE)

Incguality (D 8) is identical to (26). This shows that the inear condition for stabality
ziven by the multivariable Nyquist criterion is & subset of the general condition given
by the small gain theorem,
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